Cart (Loading....) | Create Account
Close category search window
 

Investigation of oxide charge trapping and detrapping in a MOSFET by using a GIDL current technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Tahui Wang ; Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Chang, T.-E. ; Chiang, L.-P. ; Wang, C.-H.
more authors

We proposed a new measurement technique to investigate oxide charge trapping and detrapping in a hot carrier stressed n-MOSFET by measuring a GIDL current transient. This measurement technique is based on the concept that in a MOSFET the Si surface field and thus GIDL current vary with oxide trapped charge. By monitoring the temporal evolution of GIDL current, the oxide charge trapping/detrapping characteristics can be obtained. An analytical model accounting for the time-dependence of an oxide charge detrapping induced GIDL current transient was derived. A specially designed measurement consisting of oxide trap creation, oxide trap filling with electrons or holes and oxide charge detrapping was performed. Two hot carrier stress methods, channel hot electron injection and band-to-band tunneling induced hot hole injection, were employed in this work. Both electron detrapping and hole detrapping induced GIDL current transients mere observed in the same device. The time-dependence of the transients indicates that oxide charge detrapping is mainly achieved via field enhanced tunneling. In addition, we used this technique to characterize oxide trap growth in the two hot carrier stress conditions. The result reveals that the hot hole stress is about 104 times more efficient in trap generation than the hot electron stress in terms of injected charge

Published in:

Electron Devices, IEEE Transactions on  (Volume:45 ,  Issue: 7 )

Date of Publication:

Jul 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.