By Topic

Performance characteristics and applications of hybrid multichannel ANI-VSB/M-QAM video lightwave transmission systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ovadia, S. ; Gen. Instrum. Corp., Horsham, PA, USA ; Lin, Chinlon

The performance characteristics and applications of hybrid multichannel amplitude modulation vestigal sideband (AM-VSB)/M-quadrature amplitude modulation (QAM) video lightwave transmission systems operating at either 1310 or 1550 nm are reviewed. These systems can transport up to 80 AM-VSB video channels and more than 30 64/256-QAM digital video channels over a standard single-mode fiber (SMF) using a single laser transmitter. Five main transmission impairment mechanisms for these systems are reviewed as follows: (a) clipping-induced impulse noise, (b) bursty nonlinear distortions, (c) multiple optical reflections, (d) stimulated Brillouin scattering, and (e) self-phase modulation. For AM-QAM video lightwave trunking applications, the in-line erbium-doped fiber amplifier (EDFA) selection is discussed using a frequency-domain simulation model. Such lightwave trunking systems can provide an AM carrier-to-noise ratio (CNR) greater than 50 dB with composite second order (CSO) and composite-triple-beat (CTB) distortions less than -65 dBc, and nearly error-free transmission (BER⩽10-9) for the 64-QAM channels with signal-to-noise ratio (SNR) of 30-dB or better. Comparison between 64-QAM and 256-QAM video channel transmission and the effect of the QAM channels on the AM-VSB channels are also presented. The implications of these results and others in hybrid multichannel AM-QAM video lightwave trunking systems are discussed

Published in:

Lightwave Technology, Journal of  (Volume:16 ,  Issue: 7 )