Cart (Loading....) | Create Account
Close category search window
 

A compact low-power BiCMOS log-domain filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Punzenberger, M. ; Electron. Lab., Swiss Fed. Inst. of Technol., Lausanne, Switzerland ; Enz, C.C.

A third-order Chebyshev filter based on the log-domain principle and integrated in a 1-μm BiCMOS process is presented. It has a nominal cutoff frequency of 320 kHz corresponding to a bias current of 1 μA, and can be frequency tuned over almost three decades up to about 10 MHz. It operates with a nominal supply voltage of 1.2 V, maintaining a dynamic range (DR) at 1% THD of 57 dB. For cutoff frequencies in the range of 10 kHz, the supply voltage can be reduced down to 0.9 V. The filter occupies an active area of 0.25 mm2 and dissipates 23 μW, corresponding to a power consumption per pole and edge frequency of only 24 pJ. These results demonstrate the potential of log-domain filters for very low-voltage and low-power applications

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:33 ,  Issue: 7 )

Date of Publication:

Jul 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.