By Topic

Modal time-series structure in a shallow-water environment [Hudson Canyon region]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Knobles, D.P. ; Appl. Res. Lab., Texas Univ., Austin, TX, USA ; Westwood, E.K. ; Le Mond, J.E.

The broad-band acoustic characterization of the Hudson Canyon region off the New Jersey Continental Shelf is studied with an analysis of pressure time series generated by small explosive sources and recorded on a vertical line array (VLA). The average water depth is about 72 m and the average sound-speed profile (SSP) is downward-refracting over the midportions of the water column. The seabed is characterized by sediment layers possessing sand-like characteristics. The sound-speed structure of the water column and the seabed structure create distinguishing modal features in the impulse response in the 250-500-Hz hand. The details of the depth and range dependence of the time series on the VLA are sensitive to small perturbations of the structure of the upper layer of the SSP, the water depth, and the seabed structure. This sensitivity of the acoustic field is investigated using a broad-band range-dependent normal mode model called NAUTILUS. The representation of the spatial and temporal structure of the time series in terms of a modal structure reveals several unique effects of the SSP and the geoacoustic structure of the bottom on the group velocity of the modes over a large bandwidth. Individual modes can be identified in the measured data using direct data-simulation comparisons. Cross-correlation values between data and simulations in a 155-ms time window generally vary from 0.7 to 0.9 for sensors below the thermocline but are much smaller for sensors above the thermocline

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:23 ,  Issue: 3 )