By Topic

Simulated annealing and weight decay in adaptive learning: the SARPROP algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
N. K. Treadgold ; Dept. of Inf. Eng., New South Wales Univ., Kensington, NSW, Australia ; T. D. Gedeon

A problem with gradient descent algorithms is that they can converge to poorly performing local minima. Global optimization algorithms address this problem, but at the cost of greatly increased training times. This work examines combining gradient descent with the global optimization technique of simulated annealing (SA). Simulated annealing in the form of noise and weight decay is added to resiliant backpropagation (RPROP), a powerful gradient descent algorithm for training feedforward neural networks. The resulting algorithm, SARPROP, is shown through various simulations not only to be able to escape local minima, but is also able to maintain, and often improve the training times of the RPROP algorithm. In addition, SARPROP may be used with a restart training phase which allows a more thorough search of the error surface and provides an automatic annealing schedule

Published in:

IEEE Transactions on Neural Networks  (Volume:9 ,  Issue: 4 )