Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Robust neural-network control of rigid-link electrically driven robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chiman Kwan ; Intelligent Autom. Inc., Rockville, MD, USA ; Lewis, F.L. ; Dawson, D.M.

A robust neural-network (NN) controller is proposed for the motion control of rigid-link electrically driven (RLED) robots. Two-layer NN's are used to approximate two very complicated nonlinear functions. The main advantage of our approach is that the NN weights are tuned online, with no off-line learning phase required. Most importantly, we can guarantee the uniformly ultimately bounded (UUB) stability of tracking errors and NN weights. When compared with standard adaptive robot controllers, we do not require lengthy and tedious preliminary analysis to determine a regression matrix. The controller can be regarded as a universal reusable controller because the same controller can be applied to any type of RLED robots without any modifications

Published in:

Neural Networks, IEEE Transactions on  (Volume:9 ,  Issue: 4 )