By Topic

Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sanjay-Gopal, S. ; Dept. of Radiol., Michigan Univ., Ann Arbor, MI, USA ; Hebert, T.J.

A spatially variant finite mixture model is proposed for pixel labeling and image segmentation. For the case of spatially varying mixtures of Gaussian density functions with unknown means and variances, an expectation-maximization (EM) algorithm is derived for maximum likelihood estimation of the pixel labels and the parameters of the mixture densities, An a priori density function is formulated for the spatially variant mixture weights. A generalized EM algorithm for maximum a posteriori estimation of the pixel labels based upon these prior densities is derived. This algorithm incorporates a variation of gradient projection in the maximization step and the resulting algorithm takes the form of grouped coordinate ascent. Gaussian densities have been used for simplicity, but the algorithm can easily be modified to incorporate other appropriate models for the mixture model component densities. The accuracy of the algorithm is quantitatively evaluated through Monte Carlo simulation, and its performance is qualitatively assessed via experimental images from computerized tomography (CT) and magnetic resonance imaging (MRI)

Published in:

Image Processing, IEEE Transactions on  (Volume:7 ,  Issue: 7 )