By Topic

MRL-filters: a general class of nonlinear systems and their optimal design for image processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pessoa, L.F.C. ; Motorola Inc., Austin, TX, USA ; Maragos, P.

A class of morphological/rank/linear (MRL)-filters is presented as a general nonlinear tool for image processing. They consist of a linear combination between a morphological/rank filter and a linear filter. A gradient steepest descent method is proposed to optimally design these filters, using the averaged least mean squares (LMS) algorithm. The filter design is viewed as a learning process, and convergence issues are theoretically and experimentally investigated. A systematic approach is proposed to overcome the problem of nondifferentiability of the nonlinear filter component and to improve the numerical robustness of the training algorithm, which results in simple training equations. Image processing applications in system identification and image restoration are also presented, illustrating the simplicity of training MRL-filters and their effectiveness for image/signal processing

Published in:

Image Processing, IEEE Transactions on  (Volume:7 ,  Issue: 7 )