By Topic

MODIS land data storage, gridding, and compositing methodology: Level 2 grid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wolfe, R.E. ; Raytheon STX, NASA Goddard Space Flight Center, Greenbelt, MD, USA ; Roy, D.P. ; Vermote, E.

The methodology used to store a number of the Moderate Resolution Imaging Spectroradiometer (MODIS) land products is described. The approach has several scientific and data processing advantages over conventional approaches used to store remotely sensed data sets and may be applied to any remote-sensing data set in which the observations are geolocated to subpixel accuracy. The methodology will enable new algorithms to be more accurately developed because important information about the intersection between the sensor observations and the output grid cells are preserved. The methodology will satisfy the very different needs of the MODIS land product generation algorithms, allow sophisticated users to develop their own application-specific MODIS land data sets, and enable efficient processing and reprocessing of MODIS land products. A generic MODIS land gridding and compositing algorithm that takes advantage of the data storage structure and enables the exploitation of multiple observations of the surface more fully than conventional approaches is described. The algorithms are illustrated with simulated MODIS data, and the practical considerations of increased data storage are discussed

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:36 ,  Issue: 4 )