By Topic

An optimal topology-transparent scheduling method in multihop packet radio networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ji-Her Ju ; Chung Shan Inst. of Sci. & Technol., Lung-Tan, Taiwan ; Li, V.O.K.

Many transmission scheduling algorithms have been proposed to maximize the spatial reuse and minimize the time-division multiple-access (TDMA) frame length in multihop packet radio networks. Almost all existing algorithms assume exact network topology information and do not adapt to different traffic requirements. Chlamtac and Farago (1994) proposed a topology-transparent algorithm. Following their approach, but with a different design strategy, we propose another algorithm which is optimal in that it maximizes the minimum throughput. We compare our algorithm with that of Chlamtac and Farago's and with the TDMA algorithm, and find that it gives better performance in terms of minimum throughput and minimum and maximum delay times. Our algorithm requires estimated values of the number of nodes and the maximum nodal degree in the network. However, we show that the performance of our algorithm is insensitive to these design parameters

Published in:

Networking, IEEE/ACM Transactions on  (Volume:6 ,  Issue: 3 )