By Topic

MAGY: a time-dependent code for simulation of slow and fast microwave sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Botton, M. ; Inst. for Plasma Res., Maryland Univ., College Park, MD, USA ; Antonsen, T.M. ; Levush, B. ; Nguyen, K.T.
more authors

We present the newly developed Maryland Gyrotron (MAGY) code for modeling of slow and fast microwave sources. The code includes a time-dependent description of the electromagnetic fields and a self-consistent analysis of the electrons. The calculations of the electromagnetic fields are based on the waveguide modal representation, which allows the solution of a relatively small number of coupled one-dimensional partial differential equations for the amplitudes of the modes, instead of the full solution of Maxwell's equations. Moreover, the basic time scale for updating the electromagnetic fields is the cavity fill time and not the high frequency of the fields. The equations of motion of the electrons are formulated within the framework of the guiding-center approximation and solved with the electromagnetic fields as the driving forces. Therefore, at each time step, a set of trajectories are calculated and used as current sources for the fields. We present two examples for the operation of the code, namely the two-cavity gyroklystron and the backward-wave oscillator (BWO). These examples demonstrate the possible usage of the code for a wide variety of electron-beam systems

Published in:

Plasma Science, IEEE Transactions on  (Volume:26 ,  Issue: 3 )