Cart (Loading....) | Create Account
Close category search window

Ponderomotive effects in plasma-filled backward-wave oscillators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Miller, S.M. ; Inst. for Plasma Res., Maryland Univ., College Park, MD, USA ; Antonsen, T.M. ; Levush, B.

A numerical model is presented for analyzing plasma-filled backward-wave oscillators (BWOs) operating near cutoff. The model allows for the investigation of the effects of the ponderomotive potential of the high-frequency electromagnetic waves on the motion of plasma electrons. As a result of their motion the electron plasma density is modified, and this affects the high-frequency radiation by modifying the dispersion characteristics of the slow wave structure. Two approaches for modeling the plasma are considered, a fluid model and a particle-in-cell model. Nonlinear simulations are performed to investigate the possible excitation of plasma waves over a range of background plasma densities. Results from nonlinear simulations show that for low plasma densities, electrons clump in regions of low high-frequency electric field. At somewhat higher densities nonlinear instabilities of the Raman type are excited. The model does not indicate the cause of the observed efficiency enhancement in plasma filled backward wave oscillators

Published in:

Plasma Science, IEEE Transactions on  (Volume:26 ,  Issue: 3 )

Date of Publication:

Jun 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.