By Topic

Scenario for output pulse shortening in microwave generators driven by relativistic electron beams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
N. F. Kovalev ; Inst. of Appl. Phys., Acad. of Sci., Nizhny Novgorod, Russia ; V. E. Nechaev ; M. I. Petelin ; N. I. Zaitsev

At the present time, microwave generators driven by high current relativistic electron beams are not baked and sealed, so their inner surfaces are densely covered with molecules of gas and oil. This allows the production of microwave pulses of 10-8 s to 10-7 s duration, but not longer. A microwave pulse termination scenario is speculated as follows: (1) Electrons oscillating in the strong RF field near the metallic surfaces multiply owing to the secondary emission (the multipactor effect); (2) the multipactor electron bombardment stimulates desorption of gas molecules from the metallic surfaces; (3) the gas undergoes avalanche RF breakdown; and (4) the resultant plasma stops microwave generation and, since electron-ion recombination is slow, does not allow the RF field to revive. At the gigawatt power level, the characteristic time of such a scenario is much shorter than that of the cathode and collector plasma expansion and electron beam instabilities. The energy output parameters of relativistic electron microwave generators can be (and usually are) improved at high pulse repetition rates. A more radical improvement is possible using the technology typical for high vacuum tubes, i.e., baking and sealing

Published in:

IEEE Transactions on Plasma Science  (Volume:26 ,  Issue: 3 )