By Topic

List-mode likelihood: EM algorithm and image quality estimation demonstrated on 2-D PET

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
L. Parra ; Imaging & Visualization, Siemens Corp. Res. Inc., Princeton, NJ, USA ; H. H. Barrett

Using a theory of list-mode maximum-likelihood (ML) source reconstruction presented recently by Barrett et al. (1997), this paper formulates a corresponding expectation-maximization (EM) algorithm, as well as a method for estimating noise properties at the ML estimate. List-mode ML is of interest in cases where the dimensionality of the measurement space impedes a binning of the measurement data. It can be advantageous in cases where a better forward model can be obtained by including more measurement coordinates provided by a given detector. Different figures of merit for the detector performance can be computed from the Fisher information matrix (FIM). This paper uses the observed FIM, which requires a single data set, thus, avoiding costly ensemble statistics. The proposed techniques are demonstrated for an idealized two-dimensional (2-D) positron emission tomography (PET) [2-D PET] detector. The authors compute from simulation data the improved image quality obtained by including the time of flight of the coincident quanta.

Published in:

IEEE Transactions on Medical Imaging  (Volume:17 ,  Issue: 2 )