By Topic

Robust parameter estimation of intensity distributions for brain magnetic resonance images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Schroeter, P. ; Signal Process. Lab., Fed. Inst. of Technol., Lausanne, Switzerland ; Vesin, J. ; Langenberger, T. ; Meuli, R.

Presents two new methods for robust parameter estimation of mixtures in the context of magnetic resonance (MR) data segmentation. The head is constituted of different types of tissue that can be modeled by a finite mixture of multivariate Gaussian distributions. The authors' goal is to estimate accurately the statistics of desired tissues in presence of other ones of lesser interest. These latter can be considered as outliers and can severly bias the estimates of the former. For this purpose, the authors introduce a first method, which is an extension of the expectation-maximization (EM) algorithm, that estimates parameters of Gaussian mixtures but incorporates an outlier rejection scheme which allows to compute the properties of the desired tissues in presence of atypical data. The second method is based on genetic algorithms and is well suited for estimating the parameters of mixtures of different kind of distributions. The authors use this property by adding a uniform distribution to the Gaussian mixture for modeling the outliers. The proposed genetic algorithm can efficiently estimate the parameters of this extended mixture for various initial settings. Also, by changing the minimization criterion, estimates of the parameters can be obtained by histogram fitting which considerably reduces the computational cost. Experiments on synthetic and real MR data show that accurate estimates of the gray and white matters parameters are computed.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:17 ,  Issue: 2 )