By Topic

GRCA: a hybrid genetic algorithm for circuit ratio-cut partitioning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Thang Nguyen Bui ; Dept. of Comput. Sci., Pennsylvania State Univ., Middletown, PA, USA ; Byung-Ro Moon

A genetic algorithm for partitioning a hypergraph into two disjoint graphs of minimum ratio cut is presented. As the Fiduccia-Mattheyses graph partitioning heuristic turns out to be not effective when used in the context of a hybrid genetic algorithm, we propose a modification of the Fiduccia-Mattheyses heuristic for more effective and faster space search by introducing a number of novel features. We also provide a preprocessing heuristic for genetic encoding designed solely for hypergraphs which helps genetic algorithms exploit clustering information of input graphs. Supporting combinatorial arguments for the new preprocessing heuristic are also provided. Experimental results on industrial benchmarks circuits showed visible improvement over recently published algorithms with a lower growth rate of running time

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:17 ,  Issue: 3 )