By Topic

A coupled PDE model of nonlinear diffusion for image smoothing and segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vemuri, B.C. ; Dept. of Comput. & Inf. Sci., Florida Univ., Gainesville, FL, USA ; Li Wang ; Yunmei Chen

Image denoising and segmentation are fundamental problems in the field of image processing and computer vision with numerous applications. We propose a partial differential equation (PDE) based smoothing and segmentation framework wherein the image data are smoothed via an evolution equation that is controlled by a vector field describing a viscous fluid flow. Image segmentation in this framework is defined by locations in the image where the fluid velocity is a local maximum. The nonlinear image smoothing is selectively achieved to preserve edges in the image. The novelty of this approach lies in the fact that the selective term is derived from a nonlinearly regularized image gradient field unlike most earlier techniques which either used a constant (with respect to time) selective term or a time varying nonlinearly smoothed scalar valued term. Implementation results on synthetic and real images are presented to depict the performance of the technique in comparison to methods recently reported in literature

Published in:

Computer Vision and Pattern Recognition, 1998. Proceedings. 1998 IEEE Computer Society Conference on

Date of Conference:

23-25 Jun 1998