By Topic

B-spline recurrent neural network and its application to modelling of non-linear dynamic systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chan, C.W. ; Dept. of Mech. Eng., Hong Kong Univ., Hong Kong ; Cheung, K.C. ; Hong Jin ; Zhang, H.Y.

A new recurrent neural network based on B-spline function approximation is presented. The network can be easily trained and its training converges more quickly than that for other recurrent neural networks. Moreover, an adaptive weight updating algorithm for the recurrent network is proposed. It can speed up the training process of the network greatly and its learning speed is more quickly than existing algorithms, e.g., back-propagation algorithm. Examples are presented comparing the adaptive weight updating algorithm and the constant learning rate method, and illustrating its application to modelling of nonlinear dynamic system

Published in:

American Control Conference, 1998. Proceedings of the 1998  (Volume:1 )

Date of Conference:

21-26 Jun 1998