By Topic

Parallel fast multipole capacitance solver

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. Dull ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA ; K. Gallivan ; J. M. Song ; W. C. Chew

It is found that the fast multipole algorithm (FMA), used to compute interactions between M bodies, can be used effectively in computing the electrostatic potential due to M bodies. This paper describes some of the few combinations of a parallel fast multipole algorithm and a capacitance solver. Another group has also combined the parallel FMA with a capacitance solver (Wang et al. 1996). The main difference between this and previous implementations of the fast multipole algorithm is the way parallelization was implemented. The current implementation performs well when compared to previous implementations. Other advances include precomputation, multiprocessor scalability, and a focus on data memory layout techniques. Many of these concepts that have been utilized in this implementation can be used in developing distributed memory implementations.

Published in:

Antennas and Propagation Society International Symposium, 1998. IEEE  (Volume:3 )

Date of Conference:

21-26 June 1998