Cart (Loading....) | Create Account
Close category search window
 

Generalized algorithm-based fault tolerance: error correction via Kalman estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Redinbo, G.R. ; Dept. of Electr. & Comput. Eng., California Univ., Davis, CA, USA

An extension to algorithm-based fault tolerance (ABFT) methodologies shows how parity values dictated by a real convolutional code can be employed by Kalman estimation techniques to perform real number correction for protecting linear processing systems. Intermittent failures appearing in the output samples are detected and corrected using only the syndromes normally generated in ABFT schemes. The algebraic structure of a real convolutional code provides separation needed by recursive Kalman state estimators to affect mean-square error correction. State and parity measurement equations model fault and computational noise in both the linear processing and parity generation subassemblies, and, in a departure from previous models, the noise sources are considered time-varying. The Kalman one-step estimator which makes decisions on all parity values up to the present point is determined, and it separates naturally into detection and correction operations permitting corrective action only when the detection levels exceed thresholds based on roundoff noise energy. The detector/corrector uses efficient multirate block processing techniques as determined by the real convolutional code. A smoothed fixed-lag Kalman estimator which uses parity values for a fixed amount beyond the point of interest is needed to complete the correction. It employs one-step estimator quantities and implementation simplifications are possible. Examples showing the correction behavior and mean-square error performance are presented, and the size of overhead calculations for detection and correction is estimated. A protected processing system is constructed by introducing additional subassemblies, mostly comparators, with the detection and correction parts already described. Under the usual assumptions of at most a single subassembly failure, no improperly detected or corrected data leave the overall protected configuration

Published in:

Computers, IEEE Transactions on  (Volume:47 ,  Issue: 6 )

Date of Publication:

Jun 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.