By Topic

Modeled and measured instruction fetching performance for superscalar microprocessors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Wallace ; Dept. of Electr. & Comput. Eng., California Univ., Irvine, CA, USA ; N. Bagherzadeh

Instruction fetching is critical to the performance of a superscalar microprocessor. We develop a mathematical model for three different cache techniques and evaluate its performance both in theory and in simulation using the SPEC95 suite of benchmarks. In all the techniques, the fetching performance is dramatically lower than ideal expectations. To help remedy the situation, we also evaluate its performance using prefetching. Nevertheless, fetching performance is fundamentally limited by control transfers. To solve this problem, we introduce a new fetching mechanism called a dual branch target buffer. The dual branch target buffer enables fetching performance to leap beyond the limitation imposed by conventional methods and achieve a high instruction fetching rate

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:9 ,  Issue: 6 )