By Topic

Using genetic algorithms in process planning for job shop machining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
F. Zhang ; Dept. of Mech. & Production Eng., Nat. Univ. of Singapore, Singapore ; Y. F. Zhang ; A. Y. C. Nee

This paper presents a novel computer-aided process planning model for machined parts to be made in a job shop manufacturing environment. The approach deals with process planning problems in a concurrent manner in generating the entire solution space by considering the multiple decision-making activities, i.e., operation selection, machine selection, setup selection, cutting tool selection, and operations sequencing, simultaneously. Genetic algorithms (GAs) were selected due to their flexible representation scheme. The developed GA is able to achieve a near-optimal process plan through specially designed crossover and mutation operators. Flexible criteria are provided for plan evaluation. This technique was implemented and its performance is illustrated in a case study. A space search method is used for comparison

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:1 ,  Issue: 4 )