By Topic

Evolutionary programming techniques for constrained optimization problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jong-Hwan Kim ; Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol., Seoul, South Korea ; Hyun Myung

Two evolutionary programming (EP) methods are proposed for handling nonlinear constrained optimization problems. The first, a hybrid EP, is useful when addressing heavily constrained optimization problems both in terms of computational efficiency and solution accuracy. But this method offers an exact solution only if both the mathematical form of the objective function to be minimized/maximized and its gradient are known. The second method, a two-phase EP (TPEP) removes these restrictions. The first phase uses the standard EP, while an EP formulation of the augmented Lagrangian method is employed in the second phase. Through the use of Lagrange multipliers and by gradually placing emphasis on violated constraints in the objective function whenever the best solution does not fulfill the constraints, the trial solutions are driven to the optimal point where all constraints are satisfied. Simulations indicate that the TPEP achieves an exact global solution without gradient information, with less computation time than the other optimization methods studied here, for general constrained optimization problems

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:1 ,  Issue: 2 )