By Topic

Prediction of Atomic Web Services Reliability for QoS-Aware Recommendation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Silic, M. ; Consumer Comput. Lab., Univ. of Zagreb, Zagreb, Croatia ; Delac, G. ; Srbljic, S.

While constructing QoS-aware composite work-flows based on service oriented systems, it is necessary to assess nonfunctional properties of potential service selection candidates. In this paper, we present CLUS, a model for reliability prediction of atomic web services that estimates the reliability for an ongoing service invocation based on the data assembled from previous invocations. With the aim to improve the accuracy of the current state-of-the-art prediction models, we incorporate user-service-, and environment-specific parameters of the invocation context. To reduce the scalability issues present in the state-of-the-art approaches, we aggregate the past invocation data using K-means clustering algorithm. In order to evaluate different quality aspects of our model, we conducted experiments on services deployed in different regions of the Amazon cloud. The evaluation results confirm that our model produces more scalable and accurate predictions when compared to the current state-of-the-art approaches.

Published in:

Services Computing, IEEE Transactions on  (Volume:8 ,  Issue: 3 )