Cart (Loading....) | Create Account
Close category search window
 

A self-organising mixture network for density modelling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hujun Yin ; Dept. of Electr. Eng. & Electron., Univ. of Manchester Inst. of Sci. & Technol., UK ; Allinson, N.M.

A completely unsupervised mixture distribution network, namely the self-organising mixture network, is proposed for learning arbitrary density functions. The algorithm minimises the Kullback-Leibler information by means of stochastic approximation methods. The density functions are modelled as mixtures of parametric distributions such as Gaussian and Cauchy. The first layer of the network is similar to the Kohonen's self-organising map (SOM), but with the parameters of the class conditional densities as the learning weights. The winning mechanism is based on maximum posterior probability, and the updating of weights can be limited to a small neighbourhood around the winner. The second layer accumulates the responses of these local nodes, weighted by the learning mixing parameters. The network possesses simple structure and computation, yet yields fast and robust convergence. Experimental results are also presented

Published in:

Neural Networks Proceedings, 1998. IEEE World Congress on Computational Intelligence. The 1998 IEEE International Joint Conference on  (Volume:3 )

Date of Conference:

4-9 May 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.