By Topic

Application of neural networks in spatio-temporal hand gesture recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mu-Chun Su ; Dept. of Electr. Eng., Tamkang Univ., Tamsui, Taiwan ; Hi Huang ; Chia-Hsien Lin ; Chen-Lee Huang
more authors

Several successful approaches to spatio-temporal signal processing such as speech recognition and hand gesture recognition have been proposed. Most of them involve time alignment which requires substantial computation and considerable memory storage. In this paper, we present a neural-network-based approach to spatio-temporal pattern recognition. This approach employs a powerful method based on hyperrectangular composite neural networks (HRCNNs) for selecting templates, therefore, considerable memory is alleviated. In addition, it greatly reduces substantial computation in the matching process because it obviates time alignment. Two databases consisted of 51 spatio-temporal hand gestures were utilized for verifying its performance. An encouraging experimental result confirmed the effectiveness of the proposed method

Published in:

Neural Networks Proceedings, 1998. IEEE World Congress on Computational Intelligence. The 1998 IEEE International Joint Conference on  (Volume:3 )

Date of Conference:

4-9 May 1998