Cart (Loading....) | Create Account
Close category search window
 

On a Hashing-Based Enhancement of Source Separation Algorithms over Finite Fields for Network Coding Perspectives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nemoianu, I.-D. ; Irina-Delia Nemoianu is with the Institut Mines-Telecom, Telecom ParisTech, CNRS LTCI, TSI Department, 46 rue Barrault, 75634 Paris, France, (e-mail: nemoianu@telecom-paristech.fr). ; Greco, C. ; Cagnazzo, M. ; Pesquet-Popescu, B.

Blind Source Separation (BSS) deals with the recovery of source signals from a set of observed mixtures, when little or no knowledge of the mixing process is available. BSS can find an application in the context of network coding, where relaying linear combinations of packets maximizes the throughput and increases the loss immunity. By relieving the nodes from the need to send the combination coefficients, the overhead cost is largely reduced. However, the scaling ambiguity of the technique and the quasi-uniformity of compressed media sources makes it unfit, at its present state, for multimedia transmission. In order to open new practical applications for BSS in the context of multimedia transmission, we have recently proposed to use a non-linear encoding to increase the discriminating power of the classical entropy-based separation methods. Here, we propose to append to each source a non-linear message digest, which offers an overhead smaller than a per-symbol encoding and that can be more easily tuned. Our results prove that our algorithm is able to provide high decoding rates for different media types such as image, audio, and video, when the transmitted messages are less than 1.5 kilobytes, which is typically the case in a realistic transmission scenario.

Published in:

Multimedia, IEEE Transactions on  (Volume:PP ,  Issue: 99 )

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.