By Topic

Adaptive neural control for a class of time-delay systems in the presence of backlash or dead-zone non-linearity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zongcheng Liu ; Coll. of Aeronaut. & Astronaut. Eng., Air Force Eng. Univ., Xi'an, China ; Xinmin Dong ; Jianping Xue ; Yong Chen

This study addresses the adaptive tracking control problem for a class of time-delay systems in strict-feedback form with unknown control gains and uncertain actuator non-linearity. The actuator non-linearity can be either backlash or dead zone, and the proposed approach does not require the knowledge of the bounds of non-linearity parameters. By applying an appropriate Lyapunov-Krasovskii functional and utilising the property of the well-defined trigonometric functions, the problems of time delay and controller singularity are avoided. The feasibility of using a static neural network to attenuate the effect of actuator non-linearity is proved with the aid of intermediate value theorem. Furthermore, it is proved that all closed-loop signals are bounded and the tracking error converges to a small residual set asymptotically. Two simulation examples are provided to demonstrate the effectiveness of the designed method.

Published in:

IET Control Theory & Applications  (Volume:8 ,  Issue: 11 )