By Topic

Gaussian/Gaussian-mixture filters for non-linear stochastic systems with delayed states

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiaoxu Wang ; Sch. of Autom., Northwestern Polytech. Univ., Xi'an, China ; Yan Liang ; Quan Pan ; He Huang

The Gaussian mixture approximation to the probability density function of the state is more appropriate than the single Gaussian approximation. A Gaussian mixture filter (GMF) is proposed for a class of non-linear discrete-time stochastic systems with the multi-state delayed case. First, a novel non-augmented filtering framework of the constituent Gaussian filter (GF) in GMF is derived, which recursively operates by analytical computation and non-linear Gaussian integrals. The implementation of such GF is thus transformed to the computation of such non-linear integrals in the proposed framework, which is solved by applying different numerical technologies for developing various variations of the non-augmented GF, for example, GF-cubature Kalman filter (CKF) based on the cubature rule. Secondly, a non-augmented GMF is discussed by a weight sum of the above proposed GF, where each GF component is independent from the others and can be performed in a parallel manner, and its corresponding weigh is updated by using the measurements according to Bayesian formula. Naturally, a variation or implementation of such GMF based on the cubature rule is the GMF-CKF. Finally, the performance of the new filters is demonstrated by a numerical example and a vehicle suspension estimation problem.

Published in:

Control Theory & Applications, IET  (Volume:8 ,  Issue: 11 )