By Topic

Algebraic Quasi-Cyclic LDPC Codes: Construction, Low Error-Floor, Large Girth and a Reduced-Complexity Decoding Scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Juane Li ; Dept. of Electr. & Comput. Eng., Univ. of California, Davis, Davis, CA, USA ; Keke Liu ; Shu Lin ; Abdel-Ghaffar, K.

This paper presents a simple and very flexible method for constructing quasi-cyclic (QC) low density paritycheck (LDPC) codes based on finite fields. The code construction is based on two arbitrary subsets of elements from a given field. Some well known constructions of QC-LDPC codes based on finite fields and combinatorial designs are special cases of the proposed construction. The proposed construction in conjunction with a technique, known as masking, results in codes whose Tanner graphs have girth 8 or larger. Experimental results show that codes constructed using the proposed construction perform well and have low error-floors. Also presented in the paper is a reduced-complexity iterative decoding scheme for QC-LDPC codes based on the section-wise cyclic structure of their parity-check matrices. The proposed decoding scheme is an improvement of an earlier proposed reduced-complexity iterative decoding scheme.

Published in:

Communications, IEEE Transactions on  (Volume:62 ,  Issue: 8 )