By Topic

Solution of the super-resolution problem by multi-valued nonlinear filtering, and its implementation using cellular neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Aizenberg, I.N. ; ESAT, Katholieke Univ., Leuven, Heverlee, Belgium ; Aizenberg, N.N. ; Vandewalle, J.

An original approach to the solution of a super-resolution problem is considered. A solution is reduced to the iterative process by which the coefficients of the orthogonal spectrum corresponding to the highest frequencies, which are unknown, may be obtained. Supposing that unknown values of the signal are corrupted by uniform noise with the small dispersion, iterative procedure for obtaining the highest spectral coefficients is proposed. To remove the remaining noise, and to correct the spectral coefficients obtained in the first step, multi-valued nonlinear filters are proposed. Since the CNN with multi-valued neurons is the best instrument for an implementation of these filters, the corresponding templates are used

Published in:

Cellular Neural Networks and Their Applications Proceedings, 1998 Fifth IEEE International Workshop on

Date of Conference:

14-17 Apr 1998