By Topic

Imperceptible and Robust Blind Video Watermarking Using Chrominance Embedding: A Set of Approaches in the DT CWT Domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Md. Asikuzzaman ; School of Engineering and Information Technology, The University of New South Wales, Canberra, ACT, Australia ; Md. Jahangir Alam ; Andrew J. Lambert ; Mark Richard Pickering

Illegal distribution of a digital movie is a significant threat to the film industries. With the advent of high-speed broadband Internet access, a pirated copy of a digital video can be easily distributed to a global audience. Digital video watermarking is a possible means of limiting this type of digital distribution. In existing watermarking methods, the watermark is usually embedded into the luminance channel of a video frame, which affects imperceptibility. In addition, none of the existing techniques are robust to the combination of commonly used attacks, such as compression, upscaling, rotation, cropping, downscaling in resolution, frame rate conversion, and camcording. In this paper, we initially propose a basic blind digital video watermarking algorithm, where the watermark is embedded into one level of the dual-tree complex wavelet transform of the chrominance channel to provide high quality watermarked video and extracted using the same key that was used for embedding. This algorithm is robust to compression, upscaling, rotation, and cropping. An extension of this method extracts the watermark from any level(s) of the dual-tree complex wavelet transform depending on the resolution of the downscaled version of the watermarked frame rather than only from the embedding level to survive downscaling to an arbitrary resolution. Finally, the watermark of a frame is extracted from the information of that frame without using the key that was used during watermark embedding to provide robustness to temporal synchronization attacks, such as frame rate conversion. This scheme is also robust to compression, camcording, watermark estimation remodulation, temporal frame averaging, multiple watermark embedding, downscaling in resolution, and other geometric attacks, such as upscaling, rotation, and cropping.

Published in:

IEEE Transactions on Information Forensics and Security  (Volume:9 ,  Issue: 9 )