Cart (Loading....) | Create Account
Close category search window
 

Timing Verification of Fault-Tolerant Chips for Safety-Critical Applications in Harsh Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Slijepcevic, M. ; Barcelona SuperComputing Center, barcelona ; Kosmidis, L. ; Abella, J. ; Quinones, E.
more authors

Critical Real-Time Embedded Systems (CRTES), which are deployed among others in cars, planes and satellites, feature increasingly complex safety-related performance-demanding functionality. Such functionality can only realistically be provided by means of advanced (high-performance) hardware and software. This will inevitably shift CRTES from using simple control software running on in-order, single-core processors with no caches to complex multi-sensor and multi-actuator software running on `aggressive' processors implemented in nanoscale technology deploying several computing cores and a cache hierarchy. However, the use of aggressive technologies and architectures challenges time predictability and reliability, which are mandatory features in CRTES. In this paper we present a processor design that reconciles all three goals, namely, predictability, reliability and high performance. Our design obtains trustworthy and tight worst-case execution time (WCET) estimates for safety-critical applications running on high-performance hardware facing hard and soft errors by means of a smart use of timing analysis techniques in combination with minor hardware modifications.

Published in:

Micro, IEEE  (Volume:PP ,  Issue: 99 )

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.