By Topic

Towards nanoelectronics: possible CNN implementations using nanoelectronic devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Porod, W. ; Dept. of Electr. Eng., Notre Dame Univ., IN, USA

We discuss novel nanoelectronic architecture paradigms based on cells composed of coupled quantum-dots. Boolean logic functions may be implemented in specific arrays of cells representing binary information, the so-called quantum-dot cellular automata (QCA). Cells may also be viewed as carrying analog information and we outline a network-theoretic description of such quantum-dot nonlinear networks (Q-CNN). In addition, we discuss possible realizations of these structures in a variety of semiconductor systems, rings of metallic tunnel junctions, and candidates for molecular implementations

Published in:

Cellular Neural Networks and Their Applications Proceedings, 1998 Fifth IEEE International Workshop on

Date of Conference:

14-17 Apr 1998