By Topic

Learning Predictive Choice Models for Decision Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Noor, W. ; Comput. Sci. & Inf. Manage., Asian Inst. of Technol., Klongluang, Thailand ; Dailey, M.N. ; Haddawy, P.

Probabilistic predictive models are often used in decision optimization applications. Optimal decision making in these applications critically depends on the performance of the predictive models, especially the accuracy of their probability estimates. In this paper, we propose a probabilistic model for revenue maximization and cost minimization across applications in which a decision making agent is faced with a group of possible customers and either offers a variable discount on a product or service or expends a variable cost to attract positive responses. The model is based directly on optimizing expected revenue and makes explicit the relationship between revenue and the customer's response behavior. We derive an expectation maximization (EM) procedure for learning the parameters of the model from historical data, prove that the model is asymptotically insensitive to selection bias in historical decisions, and demonstrate in a series of experiments the method's utility for optimizing financial aid decisions at an international institute of higher learning.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:26 ,  Issue: 8 )