By Topic

High-speed ultrasound volumetric imaging system. II. Parallel processing and image display

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
von Ramm, O.T. ; Dept. of Biomed. Eng., Duke Univ., Durham, NC, USA ; Smith, S.W. ; Pavy, H.G., Jr.

For pt.I see ibid., vol.38, no.2, p.100-8 (1991). The authors describe the design, application, and evaluation of parallel processing to the high-speed volumetric ultrasound imaging system. The scanner produces images analogous to an optical camera or the human eye and supplies more information than conventional sonograms. Potential medical applications include improved anatomic visualization, tumor localization, and better assessment of cardiac function. The system uses pulse-echo phased array principles to steer a 2-D array transducer of 289 elements in a pyramidal scan format. Parallel processing in the receive mode produces 4992 scan lines at a rate of approximately 8 frames/s. Echo data for the scanned volume is presented online as projection images with depth perspective, stereoscopic pairs, or multiple tomographic images. The authors also describe the techniques developed for the online display of volumetric images on a conventional CRT oscilloscope and show preliminary volumetric images for each display mode.<>

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:38 ,  Issue: 2 )