By Topic

Supervised training technique for radial basis function neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bruzzone, L. ; Dept. of Biophys. & Electron. Eng., Genoa Univ., Italy ; Prieto, D.F.

A novel supervised technique for training classifiers based on radial basis function (RBF) neural networks is presented. Unlike traditional techniques, this considers the class-membership of training samples to select the centres and widths of the kernel functions associated with the hidden units of an RBF network. Experiments carried out to solve an industrial visual inspection problem confirmed the effectiveness of the proposed technique

Published in:

Electronics Letters  (Volume:34 ,  Issue: 11 )