By Topic

Multitask Diffusion Adaptation Over Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jie Chen ; Obs. de la Cote d'Azur Lab. Lagrange, Univ. de Nice Sophia-Antipolis, Nice, France ; Richard, C. ; Sayed, A.H.

Adaptive networks are suitable for decentralized inference tasks. Recent works have intensively studied distributed optimization problems in the case where the nodes have to estimate a single optimum parameter vector collaboratively. However, there are many important applications that are multitask-oriented in the sense that there are multiple optimum parameter vectors to be inferred simultaneously, in a collaborative manner, over the area covered by the network. In this paper, we employ diffusion strategies to develop distributed algorithms that address multitask problems by minimizing an appropriate mean-square error criterion with l2-regularization. The stability and performance of the algorithm in the mean and mean-square error sense are analyzed. Simulations are conducted to verify the theoretical findings, and to illustrate how the distributed strategy can be used in several useful applications related to target localization and hyperspectral data unmixing.

Published in:

Signal Processing, IEEE Transactions on  (Volume:62 ,  Issue: 16 )