By Topic

Optimal Bidding Strategy for Microgrids Considering Renewable Energy and Building Thermal Dynamics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Duong Tung Nguyen ; Inst. Nat. de la Rech. Sci.-Energie, Mater. et Telecommun., Univ. du Quebec, Montréal, QC, Canada ; Long Bao Le

In this paper, we study an optimal day-ahead price-based power scheduling problem for a community-scale microgrid (MG). The proposed optimization framework aims to balance between maximizing the expected benefit of the MG in the deregulated electricity market and minimizing the MG operation cost considering users' thermal comfort requirements and other system constraints. The power scheduling and bidding problem is formulated as a two-stage stochastic program where various system uncertainties are captured by using the Monte Carlo simulation approach. Our formulation is novel in that it can exploit the thermal dynamic characteristics of buildings to compensate for the variable and intermittent nature of renewable energy resources and enables us to achieve desirable tradeoffs for different conflicting design objectives. Extensive numerical results are presented to demonstrate the great benefits in exploiting the building thermal dynamics and the flexibility of the proposed scheduling method in achieving different practical design tradeoffs. We also investigate the impacts of different design and system parameters on the curtailment of renewable energy resources and the optimal expected profit of the MG.

Published in:

IEEE Transactions on Smart Grid  (Volume:5 ,  Issue: 4 )