By Topic

Instantaneous phase threshold for reflector detection in ultrasonic images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Prado, V. ; Dept. of Electr. Eng., Univ. Estadual Paulista (UNESP), Ilha Solteira, Brazil ; Higuti, R. ; Kitano, C. ; Martinez-Graullera, O.

A method for reflector detection, based on the instantaneous phase of the aperture data for ultrasonic images, is proposed. The instantaneous phase (IP) image is obtained by replacing the amplitude information by the instantaneous phase in the delay-and-sum (DAS) beamforming. From the analysis of the IP image, a threshold level is defined in terms of the number of signals used for imaging. This threshold is applied to the IP image, resulting in a two-level image which gives a statistical indication of whether the pixels of a region in the image are related to a reflector or noise/artifacts. Because the proposed method uses only the instantaneous phase of the signals, it is less sensitive to attenuation than conventional DAS amplitude images. The point spread function of a 32-element array with half-wavelength pitch at 5 MHz in water is simulated and the reflector is detected for signal-to-noise ratio values larger than -29.6 dB. A phantom and an aluminum plate with artificial defects are tested with the proposed technique, using linear arrays of 64 and 16 elements, respectively. When compared with DAS amplitude images and with two-level images obtained by thresholding the amplitude images using empirical threshold values, the proposed technique reduced artifacts and dead zone, and detected all reflectors, increasing reflectors' detectability and decreasing the occurrence of false indication of reflectors. The proposed technique can be used as additional information for amplitude image analysis, with the advantages that it does not need time-gain compensation and that it considers an objective threshold value.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:61 ,  Issue: 7 )