By Topic

Determination of doping and temperature-dependent elastic constants of degenerately doped silicon from MEMS resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jaakkola, A. ; VTT Tech. Res. Centre of Finland, Espoo, Finland ; Prunnila, M. ; Pensala, T. ; Dekker, J.
more authors

Elastic constants c11, c12, and c44 of degenerately doped silicon are studied experimentally as a function of the doping level and temperature. First-and second-order temperature coefficients of the elastic constants are extracted from measured resonance frequencies of a set of MEMS resonators fabricated on seven different wafers doped with phosphorus (carrier concentrations 4.1, 4.7, and 7.5 × 1019 cm-3), arsenic (1.7 and 2.5 × 1019 cm-3), or boron (0.6 and 3 × 1019 cm-3). Measurements cover a temperature range from -40°C to +85°C. It is found that the linear temperature coefficient of the shear elastic parameter c11 - c12 is zero at n-type doping level of n ~ 2 × 1019 cm-3, and that it increases to more than 40 ppm/K with increasing doping. This observation implies that the frequency of many types of resonance modes, including extensional bulk modes and flexural modes, can be temperature compensated to first order. The second-order temperature coefficient of c11 - c12 is found to decrease by 40% in magnitude when n-type doping is increased from 4.1 to 7.5 × 1019 cm-3. Results of this study enable calculation of the frequency drift of an arbitrary silicon resonator design with an accuracy of ±25 ppm between the calculated and real(ized) values over T = -40°C to +85°C at the doping levels covered in this work. Absolute frequency can be estimated with an accuracy of ±1000 ppm.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:61 ,  Issue: 7 )