Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Conundrum of combinatorial complexity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Perlovsky, L.I. ; Nichols Res. Corp., Lexington, MA, USA

This paper examines fundamental problems underlying difficulties encountered by pattern recognition algorithms, neural networks, and rule systems. These problems are manifested as combinatorial complexity of algorithms, of their computational or training requirements. The paper relates particular types of complexity problems to the roles of a priori knowledge and adaptive learning. Paradigms based on adaptive learning lead to the complexity of training procedures, while nonadaptive rule-based paradigms lead to complexity of rule systems. Model-based approaches to combining adaptivity with a priori knowledge lead to computational complexity. Arguments are presented for the Aristotelian logic being culpable for the difficulty of combining adaptivity and a priority. The potential role of the fuzzy logic in overcoming current difficulties is discussed. Current mathematical difficulties are related to philosophical debates of the past

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:20 ,  Issue: 6 )