By Topic

A Cooperative Parallel Search-Based Software Engineering Approach for Code-Smells Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kessentini, W. ; Dept. of Comput. Sci., Univ. of Montreal, Montreal, QC, Canada ; Kessentini, M. ; Sahraoui, H. ; Bechikh, S.
more authors

We propose in this paper to consider code-smells detection as a distributed optimization problem. The idea is that different methods are combined in parallel during the optimization process to find a consensus regarding the detection of code-smells. To this end, we used Parallel Evolutionary algorithms (P-EA) where many evolutionary algorithms with different adaptations (fitness functions, solution representations, and change operators) are executed, in a parallel cooperative manner, to solve a common goal which is the detection of code-smells. An empirical evaluation to compare the implementation of our cooperative P-EA approach with random search, two single population-based approaches and two code-smells detection techniques that are not based on meta-heuristics search. The statistical analysis of the obtained results provides evidence to support the claim that cooperative P-EA is more efficient and effective than state of the art detection approaches based on a benchmark of nine large open source systems where more than 85 percent of precision and recall scores are obtained on a variety of eight different types of code-smells.

Published in:

Software Engineering, IEEE Transactions on  (Volume:40 ,  Issue: 9 )