By Topic

Doppler-Related Distortions in TOPS SAR Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Marc Rodriguez-Cassola ; Microwaves & Radar Inst., German Aerosp. Center (DLR), Oberpfaffenhofen, Germany ; Pau Prats-Iraola ; Francesco De Zan ; Rolf Scheiber
more authors

A direct consequence of the TOPS acquisition geometry and the steering in azimuth of the antenna is the time-varying Doppler centroid within bursts. If this fact is not properly accommodated during SAR image formation, undesired distortions in both azimuth and range dimensions of the focused SAR images may appear. Azimuth distortions are caused by the local mismatch of both squint and topography. Range distortions arise from the inaccurate accommodation of the intrapulse motion of the platform, usually known as the stop-and-go approximation. Conventional spaceborne SAR image formation schemes will be, in general, unable to provide accurate TOPS SAR images. These distortions are discussed and evaluated for exemplary low-Earth-orbit SAR scenarios. Compensation strategies are presented and validated with TerraSAR-X TOPS data. A discussion of the potential impact on the Sentinel-1 interferometric-wide-swath and extra-wide-swath modes (i.e, TOPS) is also given.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:53 ,  Issue: 1 )