Cart (Loading....) | Create Account
Close category search window

Analysis of the electrical properties of Cr/n-BaSi2 Schottky junction and n-BaSi2/p-Si heterojunction diodes for solar cell applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Du, Weijie ; Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan ; Baba, Masakazu ; Toko, Kaoru ; Hara, Kosuke O.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Current status and future prospects towards BaSi2 pn junction solar cells are presented. As a preliminary step toward the formation of BaSi2 homojunction diodes, diodes with a Cr/n-BaSi2 Schottky junction and an n-BaSi2/p-Si hetero-junction have been fabricated to investigate the electrical properties of the n-BaSi2. Clear rectifying properties were observed in the current density versus voltage characteristics in both diodes. From the capacitance-voltage measurements, the build-in potential, VD, was 0.53 V in the Cr/n-BaSi2 Schottky junction diode, and the Schottky barrier height was 0.73 eV calculated from the thermoionic emission theory; the VD was about 1.5 V in the n-BaSi2/p-Si hetero-junction diode, which was consistent with the difference in the Fermi level between the n-BaSi2 and the p-Si.

Published in:

Journal of Applied Physics  (Volume:115 ,  Issue: 22 )

Date of Publication:

Jun 2014

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.