Cart (Loading....) | Create Account
Close category search window
 

Gain and Loss in Active Waveguides Based on Lithographically Defined Quantum Dots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Silverman, K.L. ; Nat. Inst. of Stand. & Technol., Boulder, CO, USA ; Miaja-Avila, L. ; Verma, V.B. ; Coleman, J.J.
more authors

We report on the optical gain and loss of waveguides containing lithographically defined quantum dots. Lasing action has previously been demonstrated in a nominally identical structure. Measurements are made by monitoring the transmission of a resonant pulse while varying the injection current. We measure a maximum modal gain of 1.8 cm-1 at the peak of the ground state emission for a two-layer structure. The peak gain is insufficient for ground state lasing to be achieved in a structure with as-cleaved facets, but the gain per dot is comparable with that demonstrated in self-assembled quantum dots.

Published in:

Photonics Technology Letters, IEEE  (Volume:26 ,  Issue: 13 )

Date of Publication:

July1, 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.