By Topic

Dynamic Model of a Multibending Soft Robot Arm Driven by Cables

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Renda, F. ; Scuola Superiore Sant'Anna, BioRobotics Inst., Pisa, Italy ; Giorelli, M. ; Calisti, M. ; Cianchetti, M.
more authors

The new and promising field of soft robotics has many open areas of research such as the development of an exhaustive theoretical and methodological approach to dynamic modeling. To help contribute to this area of research, this paper develops a dynamic model of a continuum soft robot arm driven by cables and based upon a rigorous geometrically exact approach. The model fully investigates both dynamic interaction with a dense medium and the coupled tendon condition. The model was experimentally validated with satisfactory results, using a soft robot arm working prototype inspired by the octopus arm and capable of multibending. Experimental validation was performed for the octopus most characteristic movements: bending, reaching, and fetching. The present model can be used in the design phase as a dynamic simulation platform and to design the control strategy of a continuum robot arm moving in a dense medium.

Published in:

Robotics, IEEE Transactions on  (Volume:30 ,  Issue: 5 )