By Topic

Normalized Microwave Reflection Index: Validation of Vegetation Water Content Estimates From Montana Grasslands

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Small, E.E. ; Dept. of Geol. Sci., Univ. of Colorado, Boulder, CO, USA ; Larson, K.M. ; Smith, W.K.

The Normalized Microwave Reflection Index (NMRI) measures the intensity of GPS reflections, which is affected by vegetation within ~100 m of GPS antennas. In a companion paper, the theoretical basis for NMRI and how it is derived from data archived at geodetic GPS installations are described. NMRI is calculated by normalizing the standard GPS metric MP1rms on a site-by-site basis to minimize terrain effects. Here, we validate NMRI as a metric for estimating vegetation water content (VWC) and evaluate the normalization procedure. In situ measurements of plant height, biomass, and VWC were taken on a biweekly basis during 2012 at four grassland sites in Montana. These measurements were compared to time series of MP1rms, NMRI, and Normalized Difference Vegetation Index (NDVI) from each site. At each site, a significant linear relationship exists between MP1rms and VWC. However, this relationship is not consistent across sites. Once normalized, a linear relationship exists between NMRI and VWC (r2=0.71) that is consistent across the four sites. This suggests that VWC could be predicted from NMRI at sites without in situ observations, as long as vegetation and climate are similar. There is no clear relationship between NMRI and either vegetation height or biomass. The importance of normalization is shown using data from eight additional sites. After normalization, a strong positive correlation is apparent between NMRI and NDVI across all grassland GPS sites in Montana.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:7 ,  Issue: 5 )