By Topic

Gene Selection Using Locality Sensitive Laplacian Score

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Bo Liao ; Key Lab. for Embedded & Network Comput. of Hunan Province, Hunan Univ., Changsha, China ; Yan Jiang ; Wei Liang ; Wen Zhu
more authors

Gene selection based on microarray data, is highly important for classifying tumors accurately. Existing gene selection schemes are mainly based on ranking statistics. From manifold learning standpoint, local geometrical structure is more essential to characterize features compared with global information. In this study, we propose a supervised gene selection method called locality sensitive Laplacian score (LSLS), which incorporates discriminative information into local geometrical structure, by minimizing local within-class information and maximizing local between-class information simultaneously. In addition, variance information is considered in our algorithm framework. Eventually, to find more superior gene subsets, which is significant for biomarker discovery, a two-stage feature selection method that combines the LSLS and wrapper method (sequential forward selection or sequential backward selection) is presented. Experimental results of six publicly available gene expression profile data sets demonstrate the effectiveness of the proposed approach compared with a number of state-of-the-art gene selection methods.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:11 ,  Issue: 6 )