By Topic

Direct measurement system of nitrogen dioxide in the atmosphere using a blue light-emitting diode induced fluorescence technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sadanaga, Yasuhiro ; Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan ; Suzuki, Kazunari ; Yoshimoto, Takatoshi ; Bandow, Hiroshi

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.4879821 

An instrument for measuring atmospheric nitrogen dioxide has been developed by a light-emitting diode induced fluorescence (LED-IF) technique. Air was introduced into a fluorescence detection cell. A pulsed blue light LED with a peak wavelength of 430 nm was irradiated to excite NO2 molecules in this cell. Fluorescence emitted from excited NO2 molecules was detected by a dynode-gated photomultiplier tube. The current detection limit of the LED-IF instrument was estimated to be 7.0 and 0.91 ppbv (parts per billion by volume) at 1-min and 1-h integration times, respectively, with a signal to noise ratio of 2. This result indicates that this LED-IF instrument can measure sufficiently precise 1-h values of NO2 concentrations in the urban atmosphere. An NO2 test observation and an intercomparison of the LED-IF instrument with an NO2 measurement system based on a photolytic converter/NO-O3 chemiluminescence method were performed in the urban atmosphere. Concentration differences between the two methods were within ±25% for about 90% of the data. It has been demonstrated by these observations that NO2 concentrations can be observed in the urban areas using the LED-IF instrument.

Published in:

Review of Scientific Instruments  (Volume:85 ,  Issue: 6 )